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280 BROSOWSKI AND GUERREIRO
1. INTRODUCTION

Let S be a compact Hausdorff space, S # ¢, and consider the compact
Hausdorff space 7:= {—1,1} x S. Let 0 := (B, C, y, x) where

(i) B, C:S— R" are continuous functions such that the convex and
open set

Uy,:=Uc:= [ {veRY|{(C(s),v) >0}
se s
is non-empty, Ne N,
(ii) y: 7T - R is a non-negative continuous function such that

v '}’(—1, S)+'})(1, S)>Oa
seS

(iii) x:S8—Ris a continuous function.

We denote by B the set of all such “parameters” ¢ and define for each
o€ P a norm by setting

loll := max {IBllw, | Clles 17105 %] 0 }-

For real valued functions on S or 7, | -|| , denotes the usual sup norm and,
for vector valued functions 4: S — R”, |-||, is defined by

141l :=sup{llA(s) e R|se S},

where || -|| denotes the Euclidean norm in RY.

We denote by =; the projection of a Cartesian product on its ith factor.
For each (y, z)e R x R define p(y, z) := z and consider the minimiza-

tion problem MPR (o)

Minimize p(v, z) subject to ve U, and

<Bshoy
{n, s)er" {C(s), v (1, ) 2K nx(s).

As it was shown in [5], this minimization problem extends the classjcal
rational Chebyshev approximation problem, compare also Example 1.1. It
includes also weighted, one-sided, and unsymmetric approximation
problems. Further we have shown in [5], that this minimization problem
is non-quasi-convex and permits not only a local theory but also a global
theorv, compare 6. 7. 81.
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Due to the nature of this problem, it suffices to consider in U, clements
of norm 1. We will again denote by U, the set

= {veR"|[v| =1}

Further we define the set

V,:= {reC(S)

B
ueuar"<c,u>}

and the continuous mapping R,: U, — V, by setting

{B,v)
R ==
(V) C.o>
for each ve U,.
For each o e P we define the sets
Z,:= ) {(v, z)eU, xRy (Bls) vy y(n,s)zsnx(s)}
s)e T "¢y
and
<B,v>}
Fo:=<(r,z)eV,xR| 13 = ,
{(r Z) X (Uaz)ezar <C9 U>

which are called feasible sets. Further we introduce the minimum vaiue

E,:=inf{zeR|(v,z)eZ,}.

Since y is not identically zero, we have E_ >0 provided Z, # 5. The set'of
all solutions of MPR(¢) in Z, resp. F, is denoted by

P,:={(v,z)eZ,|z=E,}
resp.

Q,:={(rz)eF,|z=E,}.
Further, we introduce

M:= {ceP|Z,#T}

and the solvability set

= {Jeqslpa#g}‘
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Clearly, we have 2. If N=1, then L= In fact, if a sequence (z,)
in Rt converges to E, and satisfies the inequalities

B(s)

(nxer C(s) — (1, 8) z, <1 x(s),

then we have for n—

B( 5)
Y , 8) E.<nx(s),
s ) — (1, 8) E, <1 x(s)
which implies that either (1, E,) or (=1, E ) in Z,,.
We say that o satisfies the Slater condition, if the set
<._ <B(s), v)
Zs:= () {w2)eZ,n e —V(n,S)Z<f7x(S)

(n,s)eT

), v
), v
is non-empty, which is equivalent to the set
Fi= () {(n2)eF,lnr(s)=v(n,s) 2 <nx(s)}
(n,s)eT
being non-empty.
Let ¢ in M be given. For each v, in U, define the linear space

H,, = H, = {yeR"|<ro(s) C(s)— B(s), y> =0},

where ry:= {B, v5/{C, vy>.
An element v, in U, is called normal (with respect to ¢) iff dim H,, =1.
Let v, be normal. Then we also call

<B Vo)

ro= (C.ve> and (vy, 20)EZ,

normal. A parameter ¢ € £ is called normal, if every point in P, is normal
(with respect to o).

A particular case of MPR(g) is given by the following example:

Exampre 1.1. Let g4, g4, s 815 Po» Pys -y B, € CLa, b7 be such that the
set

{ﬁeRm+l

v g: ﬁ,-h,-(s)>0}

sefa, b] i=0
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is non-empty and define N:=I+m+2,
BO(S) L= (gO(s)5 gl(s)s seey gl(s)a 07 05 caey 0)9
CO(S) = (07 07 - 0’ hO(S)a hl(s)’ (%) hm(s))s
yo(n, 8) := 1.

For each function xe C[a, b], define the parameter o, 1= (By, Cqy, Vo, X}
and the set

8= {0,€LlxeC[a b]}.

Let (r, E, ) in F, be a solution of MPR(s,). Then r is a Chebyshev
approximation to the function x from the set of generalized rational
functions

{(Bm U>
<C03 U>

with minimum distance E, . In this case we have

eCla, b] SE[VG ” {Cpls), v >0}

V=n(F,)=V.

Ty

ie., the set of approximating functions is independent of the function x.
If we choose
1—7
5 §)= T s
71, 8) ="
we obtain the one-sided approximation problem. In this case the set of
approximating functions is given by

{<Bo,v> (Byls), v)
(Co,v) {Cols), v

It is clear that in this case the set of approximating elements depends on
the function xe C[a, b].

eCla,b]li VvV <(Cys),v>>0and gx(s)}.
sefa, b]

If we choose g,(s):=s", v=0,1,..,7 and A (s):=5",v=0,1, .., m, we
obtain the classical rational Chebyshev approximation problem.
In this paper we investigate the stability of the minimization problem
MPR (o), i.e.,, we investigate the continuity of the feasible set-mappings
Z: M- POW(SY ' xR) and F: M > POW(C(S) x R),
the minimal set mappings

P:8 >POW(SY " 1xR) and Q:2-POW(C(S)xR),
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and of the minimal value

E: 2R,

where POW(M) denotes the power set of a set M and SV~ ! denotes the
unit sphere in R”.

We will use the usual concepts of lower and upper semicontinuity for the
set valued mappings:

DrriniTioN 1.2, Let X, Y be metric spaces and F: X > POW(Y) be a
set valued mapping.

(i) The mapping F is lower semicontinuous at the point x, e X iff for
each open set W< Y such that Wn F(x,)# (J, there exists an open set
W, < X such that x,e W, and

xeWo=>F(x)n W#J.

(ii) The mapping F is upper semicontinuous at the point x, € X iff for
each open set W< Y such that F(x,) = W, there exists an open set Wyc X
such that x,e W, and

xe Wy=F(x)< W.

Our investigations showed that due to the side condition ve U, the usual
concept of a closed set-valued mapping is not so suitable for the investiga-
tion of the mappings Z and P. Thus, we used the following more suitable
modification:

DerFNiTION 1.3, Let 9t be a non-empty subset of M. A set-valued
mapping

Y: N —->POW(SV1xR)

is called r-closed in 6,9 iff given sequences (o,) in 9 and
(v,,z,)eSY xR such that

O-n—’o-Oand (Unszn)_)(v()’zo)and v (Dn9zn)ew(an)andvoe'//(Uo'o)p
neN

then (vy, zo) € ¥(0y).

For the classical rational Chebyshev approximation problem (compare
Example 1.1) H. Maehly and Ch. Witzgall [14] considered the parameter
set €, and proved that the metric projection

0 Q: 8- Cla, b]
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is continuous at all normal points of &, arid can be discontinuous at non-
normal poiats. In this case n; o Q is a point-to-point mapping since for all
. €&, the problem has a unique solution in F, . This result was extended
by H. Werner [17], who showed that at all non-normal points o, the
metric projection 7#; o Q is always discontinuous provided x is not
contained in 7w, = F,. In this case =, - ¢ is also continuous. Later
E. W.Cheney and H. L. Loeb [12] considered Chebyshev approximation
by generalized rational functions in the interval [g, 6] and they proved: If
for each o, € &, the problem MPR(s,) has a unique solution in F, , then
the metric projection

1,0 Q: 8- Cla, b]

is continuous at o, if and only if xen, o F, or x is normal. Later
H. L. Loeb and D.G. Moursund [13] extended some of ‘these resulis to
restricted range approximation, which for a fixed parameter includes also
one-sided best approximation. In this last case they defined for x e C(S) the
set of approximating elements by

{re V,

and considered best approximations to functions ye C(S) from- this set.
Thus, in their stability investigations they considered only variations of the
function y, where the set of approximating elements is fixed. The same can
be said for the linear case as the results of G.D.Taylor [16] and
L. L. Schumaker and G. D. Taylor [15] show, compare also the review
paper of B. L. Chalmers and G. D. Taylor [11]. For best approximation
in normed linear spaces B.Brosowski, Deutsch, and Nirnberger {4]
considered also variable subspaces and obtained some stability results.

In our investigation of the stability of the problem MPR({g) we consider
variations of all the coordinates of the parameter o. Thus, we include also
the case of a variable set of approximating functions. An important rdle is
played by Slater condition, which is considered in detail in Section 2.

In Section 3 we show that the lower semicontinuity of Z and of F at a
point ¢ €M are equivalent to the Slater condition in ¢ as well as to the
upper semicontinuity of E at ¢. It should be remarked that the proof-of the
implication

Y r(s)< x(s)}

o satisfies Slater condition = Z(or F') is lower semicontinuous at

is a slight extension of the classical proof for strictly quasiconvex mini-
mization problems, compare Bank, Guddat, Klatte, and Tammer
L1, pp. 40-417. The implication

Z (or F) lower semicontinuous at ¢ = F upper semicontinuous at &
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is also true for non-quasi-convex minimization problems, compare
[1, pp. 60-62], and the references mentioned there. The proofs given here
use the special structure of the minimization problem MPR(s). It is
remarkable that in the case of the non-quasi-convex problem MPR(¢), the
converse implications are true. We have upper semicontinuity at a point
g€ M for the mapping Z only in the case N=1. For N> 2 the mapping Z
is never upper semicontinuous at a point ¢ in M. For all o € Y such that
the set V, is nowhere dense in C(S), the mapping F is not upper semi-
continuous at a.

It is well-known and easy to prove that in the case of ordinary
Chebyshev approximation the minimal value is continuous (in fact it is
Lipschitz continuous), if one considers only variations of the function x.
This can also be derived from a more general result for MPR (o), compare
[97]. If one considers variation of all coordinates of o, then the situation is
much more difficult.

In Section 4 we prove, for the case N=1, that the continuity of E at
o€ 8 is equivalent to Slater condition in ¢. For the case N> 2, we prove

P upper semicontinuous at ¢ => E continuous at

= ¢ satisfies Slater condition
and

P, compact and o satisfies Slater condition = E continuous at ¢.

In Section 5 we consider the stability of the mapping P. Our main results
are:

(i) The set
2:= {0 8| P, compact and ¢ satisfies Slater condition }

is open in £.

(ii) P upper semicontinuous at o <> o e L.

For the proof of the necessity that ce®, we had to assume that
#S>N—1, ie, the space S must contain enough points. Since P, com-
pact implies ¢ normal (compare Proposition 5.5), the statement (ii) is
similar to the results of H.Werner [17] and E.W.Cheney and
H. L. Loeb [12] for the metric projection 7,  Q in the case of ordinary
rational Chebyshev approximation in the interval [a, b]. We can derive
from our statement one direction of their result, namely:

(ili) o normal and #m, o Q,=1=x, o Q continuous at .

Even in this particular case our result is more general, since we permit
variations of all coordinates of ¢ and do not assume S= [a, #] and Haar
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condition, compare Corollary 6.7. The statement (iii) is a consequence
of the main results of Section 6, where we consider the stability of the
mapping Q. These main results are:

{iv) Q upper semicontinuous at o=-Q, compact and ¢ satisfies
Slater condition.

(v) Q compact and o satisfies Slater condition and ¢ normal=-Q
upper semicontinuous at o,

(vi) The set
{o € 2]Q, compact and ¢ satisfies Slater condition and ¢ normal }
is open in £.

It is an open question whether the upper semicontinuity of Q at a point
o € L implies also the normality of ¢ as in the mentioned case of ordinary
Chebyshev approximation in the interval [a, 1.

We excluded an investigation of the lower semicontinuity of P and 0,
since according to the known results for linear case, compare
B. Brosowski {2], this problem needs its own investigation.

2. ON SLATER’S CONDITION

ProposiTion 2.1, If o € IR satisfies the Slater condition, then we have

Z:=2Z, and  FI=F,

For the proof, see in [10, proof of Theorem 1.17.
Define for (v, z)e Z, the set

L (B(s)hvy B
Mo, v,z):= {(n, s5)€e T!n LS y(n, 5) 2= nx(S)}

Using [8, Theorem 1.1; 10, Theorem 1.17], we have:

PrROPOSITION 2.2. Let 64:= (By, Cg, Vo, Xo) and o=(B;, Co, v, x) be
such that o satisfies the Slater condition.

If' (U()s an) EPGO’
then (vy, z) € P,,.

(UO’ Z)EZaa and M(607 Vo an) CM(O—a Vo, Z)’

Remark.  The theorems used from [8, 10] assume x,¢ V. If x,e V',
then the result is trivial.
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PROPOSITION 2.3.  If (vy, zo) € Z,,, resp. (g, 29) € F,,, is a Slater element
for o, M, then there exists a neighborhood W of ¢, in M such that

V (v, 20)€Z;, resp. (ro, zo) € F.
ce W

Proof. 1If we set ry := (By, v4/{Cy, vy, the following proof works in
both cases. Since

. {Bol(8), v9)
et {Col(s), vy

there exists a real number 6 >0 such that

. {By(s), vy ) _
s)eT  {Cols), vo)

— 701, §) 2o <MX(5),

Yol#1, 8) 2o — nxo(8) < —6 <0,

we can also assume that

V (Co(s),v9) 26.
ses§
Define
. (o 0 83 —1
o= min{g 7t T (Bl +1Coll) '}
and

W:={ceM||lo—o,l <e}.
If oe W and (y, s)e T we have

{C(s), vg) = {Co($), Vo) + {C(s) — Co(5), v )
20— [C—Colo=0/2
and

77 <B(S), U0> .
(C(s), 50

— [<B(S), vo>  (Buls) vo>]
LC(s), vg>  Cols), vy)

(Byfs), vo)

* [” {Co(5), 00D

(1, 5) 2o — nx(s)

—70(%, 8) Zo—nxO(S)]

+ [yo(ns s) —y(n, 5)1 2o + 1l x0(s) — x(5)]
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< SCols) v - [<B(s) — By(s), vo | + [ {Bo(s), 102! | {Cs) — Cols) vo )
N CC(s), v - {Col$), o)

_5+Hy0_yHooZO+”x0—x“oc

<§(HC0H0@+!?Bollw)-8—5+szo+g

PR Y R
<Z_5+94°%- S0
sp7o+3tim =01

ProrosITION 2.4, Let Z* be a non-empty subset of Z, such that

pvi+(1—pju, >
v, 2:), (v, 2,)€Z¥=> ¥ Y ( ,z|eZ*
( 1) ( 2 2) pel0,1] zzmax(z,, z,) ”pUﬂ'i‘(l—*p) 1]2“
and the set
V* = {UGRN 3 <—v,,Z>EZ*}
zeR ”U”
is convex.

Assume Z* does not satisfy the Slater condition, i.e., there does not exist
an element (v. z) in Z* such that

{B(s), v)

(ﬂ,s)sTﬂ {C(s), v —y(n, 5) z <nx(s).

Then:
(1) The set
vim <Bs) vy _ )
e @, ZQZ* {(n, Vet (C(s),v) =x(s) and y(n, s) = 0}
is non-empty and
(ﬁ) ’ 3 SEY s

elU;x® (50er*  {Cls),v)

Proof. (i) Choose an element (v,, z,) in ¥* xR such that

N
ve € relint {(V*) and zo>inf{zeRl<H—vo—”, Z>EZ*>5¥.
Yo
Since the Slater-condition is not fulfilled, there is an element (y, s} in T
such that
CB(s), vo)

ﬂm—v(n, s} zo=nx(s). (%)
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There exists an & >0 such that the element (vy, z,—¢) is also feasible, ie.,
we have

Zf,((i)) ’;(;i (1, 5)(zo— £) <x(s).
Subtracting (*) from the last inequality we obtain
(1, 5)e <0,
which implies
CB(s), vo

¥n,s)=0  and = x(5).

CC(s), 007

Choose any element ve V'*. Since v, € relint (V' *), there exist an element
v, € V* and a real number 0 < p <1 such that

vo=pv+(1—p)u,.

The element v and v, satisfy the inequalities

<B(s), v

1C(s), 0y IS0

and

<B(S) vy

100y OISO

Then we have

{B(s), vy
<C(S)a 0>

Q) vy [ (Bl v
“”<c<s),vo>[”<0()> ”]

{C(s), v, [ (Bls)h o> x(s)]
(C(s), voy LT <C(s), 01>

P Cs), vy ['7 {B(s), v
TP LCGs), o) LT (CLs), 0>

Thus, it follows {B(s), v>/{C(s), v> = x(s).

0=9n————T—nx(s)

+(1—-p)

— r)x(s)} <0.
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Since v was cliosen arbitrarily in V'*, the set

{B(s), vy
(n,8)eT |———-=x(s)and y(y, s)=0
L { (Cls), vy !
is non-empty and clearly equal to T*.

(i) Assume there exists an element (v,, z,) € U, x R such that

CB(s), v:)

A b I

By compactness of T* and continuity of the functions involved, there exists
an open set W* > T'* such that

<Bs)v>
(n, s)e W* n <C(S), U1> 7(’7, S) Z4 <11x(5)_

Since T* £ T, we can assume that W* is different from 7.
We claim that there exists an element (v,, z,) in Z* such that

B>
(n,s)eT\W*n <C(S), 02> 'V(”I; S) 22<11x(s),

If not, consider the set

(Bls) vy

Z:= N {(v,z)eSNIxR.n<C(S)’U>

(n,s)e T\W*
hY
—y(n, s) z < nx(s) and {C(s), v > > 0}.

Since Z*  Z, applying part (i), the set

<B(s),v)

IR (CRRE A e

(v,z)eZ*

=x(s)and y(n, 5s) = 0}

is non-empty. By definition of T*, we have T < T*, which is not possible.
Thus, the claim is proved.
By compactness of T\ W* there exist M, K> 0 such that

<B(S)7 Ul>
(n,5)e T\W* 1 m—v(n, sz <yx(s)+ K
and n MN,}}(", S) Zzéﬂx(s) M

(C(s), v27
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We remark that all the above inequalities remain true if we replace z, z,
by

z:=max{zy, z,}.

Choose

O<p< <1,
=M Ka

where

(Cs) 02 SGS}’

and define v := pv, + (1 —p) v,. We will show that (v/||v]|, z) is a Slater
element for Z*, which is a contradiction.
For each (n, s)e W* we have

o 1= max {MGR

1ol = 1(n5) 2 <1x(5)
and
(B(s), v3)
e Cs)0a> Y(n, 5) z <nx(s).

Multiplying the first inequality by p<{C(s), v, >/{C(s), v>, the second by
(1 —p){C(s), v5>/{C(s), v> and adding both, we obtain

RO
1oL (1, ) <nx(s).
For each (¢, s)e T\W* we have
$B(s), v,
m—v(n, s)<nx(s}+K

and
" {B(s), v,
CC(s), vy

Proceeding as before, we obtain

—v(n, 5) z<nx(s) — M.

<B(S)9U>_ ., <C(S)=vl>_ _ <C(S)’v2>
(Cls), oy 1) 2Smx() + Ko ~rm S = MU=P) e oy
(Cls), 12

<nx(s)+ [(Ka+ M)p—M]<nx(s). |

(C(s), v>
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3. CONTINUITY PROPERTIES OF THE FEASIBLE SET
PrROPOSITION 3.1.  The mapping Z: M — POW(SY 'x R) is r-closed.
Proof.  Let the following sequences be given
on = (BH’ C"’ 7‘)'! 'xll) in ‘JJ? and (v"' zll) e ZG,,
and elements
6o:= (By, Co, 70, Xo)in W and (£, H)e S* ™ 'x R

such that
o,—0gand (v,,z,)— (£, Z)and e U,

For each ne N we have

<B( ), Uy
\—/ = Mo R
{1, 5) <Cn )s Un>

we receive for n— x

(By(s), v
Y
(n‘-v)C'/'rI <C() (), ¢ >

e, Z is r-closed. |

/:1(’7’ - ) 7'/1\'736 ( )

Since te U

an*

= olM, ) 2 < nxols),

Remark. In general the mapping
Z: M- POW(SY 'xR)

is not closed in the usual sense, as the following consideration shows.
Assume N =2 and choose a parameter ¢ = (B, C, 7, x) such that

vV B(s)=0 and  y(n,s)>0.

(n,s)eT

Consequently, there exists (v, zo)€ Z,. By Lemma 3.4, there exists an
element wy in S¥~ ' such that

¥ (C(s),we> 20 and 3 LC(sg), wod =0.

ses spc S
Define o, : = 6. Then we have
1 . 1
6,6 and |wo+-1vg,z5)€Z, and [ wo+ -0y, zo )= (Wg, Zo)
n n

Since (wy, zo) € 7., Z 15 not closed in o.
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PROPOSITION 3.2. Let o, be an element in M. Then the following
statements are equivalent:
(1) Z is lower semicontinuous in a,,
(2) F is lower semicontinuous in g,
(3) E is upper semicontinuous in o,
(4) o, satisfies the Slater condition.

Proof. (1)=>(2). Assume F is not lower semicontinuous in ¢,. Then
there exist an open set W< C(S)x R and a sequence (g,) in I such that

F,nW#J and g, 0q and V F,aoW=.

neN
The mapping 4,,: U,, x R = C(S) x R defined by

<B030> )

A (v, z) = <<C0 U>,z

is continuous. Thus, the set

Woi= AZNW)
is an open subset of U, x R and is also open in S¥~!x R. Obviously, we
have

Z, ,NWo# .

Choose an element (v, z,) in Z,,n W, and a compact neighborhood W),
of (vy, z4), which is contained in W,. Then we have also

Z,NW,#J.

Since Z is lower semicontinuous in ¢, there exists an open neighborhood
W, <M of o, such that

V Z,AW,#D.

ce W,

For n large enough, say n > n,, we have o, W,. For each n>n,, choose
an element (v,,z,) in Z, N W,. Since W, is compact and contained in
U, xR, we can assume that (v,, z,) converges to some (7, z), which is
contained in U, xR. By Proposition 3.1, (7, z)eZ,,. Further we have
(v, z)e W, = W,. Consequently, we have (7, z)e W,n Z_, which implies
also (7, Z)ye W F,, where 7 := (B, 7)/{C, 7).
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If we set

then we have (r,,z,)eF, and (r,,z,)— (7, ). Thus, for n large enough,
we have (r,,z,)e W which contradicts F, n W= for each neN.

{(2Y=1(3). For £¢>0 dcfine the open set

W .= {(nz)eC(S)xR||z—E, <z

(7()

Since W, n F, # &, there exists an open neighborhood W< M of 4, such
that

ceW=3r,z2)eF,n W,

which implics £, — E, <z—-E, <=

{3)=(4). Assumc o, docs not satisfy Slater-condition. By Proposi-
tion 2.4, there cxists a non-empty closed subset T* < T such that

(By(s), v

Y - = x(s and (n,5)=0.
(. )& Z”U (n.s)eT* <C,0(S), U> ( ) (’7

For ye { — 1, 1} define the closed and disjoint sets

S, .= {seSi{n,s)eT*}.

n

By Urysohn’s lemma there exists a continuous function @: S5 - [—1.1]
such that

vV O(s)=

se S,
ne{—1,1}. Now define sequences

1 (1+E,) 6

. . ae e s _ ey )
Bn L BO? cn L ('(]s in - /()+n= Xy i= Xg— "

neN. The sequence
G, L= (an Cn’ 7no Xn)

converges to o, for n — .
For each neN, we have Z, # (. In fact, choosc an element voe U,
such that

(vg, L+ E, )eZ,,

640 €1 3 3
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Then for each (y, s)e T we have the estimate
g $Bals) o) _
<Cn(s)a UO>

=y <BO(S)’ UO>
(Cols), vo>

nl+E,,) 8(s) 1+ £, [n@(s)—1]
n

Valtl, )1+ Eqy)

o1, $)(L + E,y) — (_1_+n_E@2

<nxo(s) — "

<nx,(s),

ie., (vy, 1+ E,)eZ, for each neN.
For each ne N and each (v, z) € Z,, we have the estimate z> £, + 1. In
fact, by Proposition 2.4 (ii) there exists a point (4, so) € T* such that

. <<Bo(so), vy
*\ < Colso), v>
which implies

> 1o({ By (s), v /L Co(s), v) — xo(5)) + 1o O(SHE,, + 1)/n
g 7o(Mo» S0) +1/n

xo(so))>o and 7o(e, 50)=0 and (o) =10,

>E, +1.

Consequently, E, = E, +1 contradicting the upper semicontinuity of E
at oy.

(4)=(1). Let W be an open set such that

Z,N"W#J.
By Proposition 2.1, we have
a0 =Zoo
which implies
ZonW#JH.

Choose (vo.2,) in Z; nW. By Proposition 2.3, there exists ‘an open
neighborhood W, < I of o, such that

ce W= (vy,20)eZ,

ie., Z is lower semicontinuous in o,. |
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COROLLARY 3.3. Let a,eM satisfy the Slater condition. Then the
mappings n, - Z and n, = F are lower semicontinuous.

LEMMA 34. Let N>2 and Ce C(S, R") be such that U.# . Then
there exists an element w in S~ such that

(@) ¥ (Cls),w)=0,

(b) 3 C(sy),w)>=0.

So(—

Proof. Let vq in R be such that

VS‘ {C(s), v9> >0.

The assumption N =2 implies that there exists an element w, in R” such
that v, and w, are linearly independent. For 4> 0 small enough we have

YV LC(8), vy + Awgy ) > 0.

sc S
Define v, := vy + 2w, and let fe R and s,€ S be given by

CC(so) voy . CL(s) o)

b= Chonory ~ M50y

Then the element
ﬁl’l
|| Vo — /5’/ Il

has the required properties. |

PROPOSITION 3.5. Consider the mapping
Z: M- POW(SY "' xR).

Then we have

(1) If N=1, then Z is upper semicontinuous on M.
(1) If N=2, then, for all 6 in M, the mapping Z is not upper semi-
continuous at o.

Proof. (i) Let o in I be given. Then there exists an element v, in R
such that

fool =1 and Y (C(s), v =C(5) - v,>0.

se s
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We can assume v, = 1. Then, for some o >0, we have

Y C(s)za>0.

ses§

By way of contradiction, suppose Z is not upper semicontinuous in o.
Then there exists an open set W and a sequence (a,,) in I such that

Z, W and g,—0 and v Z, ¢ W.

neN

Since o, — o we have

o
Y 2—‘:
ses Cn(S) 2

for n large enough, which implies that only points of the form (1, z,) are
contained in Z, . Thus, there exists an element (1, z) in Z, \ W.
Since M = £, we have (1, E,) e Z,, and consequently

Z,={(1,z)eR*|z>E,}.

Then there exists an >0 such that E, <z+¢ implies (1, z)e W. Hence
(1, z,) ¢ W implies z, < E, — ¢ for n large enough. Then we have

B,(s)
yer” (cn(s) *x"(’)> <Pl 5) 2,

< y”(n’ S)(Ea' — 8),
which implies
B(s)
(’IsXET”(C(S) x(s))<')’(’73 S)(Ea_-_g)’

ie., (1, E,—¢)e Z, contradicting E, to be the minimum value.

(ii) Let o in I be given. By Lemma 3.4 there exists an element w in
S¥=! with the properties (a) and (b). Define the sequence

0,:= (B, Cp, Yps X)
by setting

w 1
Cn(s) = C(S) + ;’l_ and Vn(’?, S) = “/(17, S) + ;

for each se S, (5, s)e T, and ne N. Since

v ¥ <C,,(s},w>==(C(s),W>~l—12l
s n on

nelN se
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and
v 3 y.0n5)>0,

nef (g8l
there exists, for each ne N, a real number z, such that (w,z,)eZ,_ . The
open set
W= {(v,z)eSN' b R’ Y (C(s), 1) >0¥
' se S b
contains Z_ but not the element (w, z,), nef, because {C(sy), w)=0.

Since ¢, — 0, Z cannot be upper semicontinuous at g.

Choose B, C:S—R" such that for some 7, x, the parameter
ag=(B, C,y, x) is contained in M. If we restrict the mapping

F: M - POW(C(S) x R)
to the set
EInB, o {(B, Ce 7 I) ewi},

then the continuous mapping A, defined in the proof of Proposition 3.2 is
independent of ¢. Then F has the factorization F= A4 = Z, and, by Proposi-
tion 3.5(ii) we obtain

ProprosITION 3.6. Consider the mapping
F: My = POW(C(S) x R).
If N=1, then F is upper semicontinuous on My ..
ProrosiTioN 3.7. For all 6 € M such that the set V, is nowhere dense in
C(S), the mapping
F:M—>POW(C(S)xR)

is not upper semi-continuous at o.

Proof. Let oY be given and choose an element (w,z) in U, xR.
Since ¥, is nowhere dense in C(S), the sct

M:= U [V n{C,w)+1)]—n{B,w)

nE

is also nowhere dense in C(S). Consequently, there exists a function & ¢ M.
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Define a sequence o, := (B,, C,, 7., x) by setting

@ w 1
B,i=B+==, C,i=C+=,  pi=y4-
n n n

for each N e N. Since

VY (Cs) W = (Cls), w + it
n n

neN seS
and
VoV y.(n8)>0,

neN (n,5)eT

there exists, for each ne N, a real number z, such that
(ru» 22) € F,,

where r,:= (B,,w)/{C,,w). We can assume z,-> co. Thus, the set
{(r,, z,)} has no limit point in C(S)x R and consequently, it is closed in
C(S) x R.

We claim

Vo (rw 2,) ¢ Fs.

neN
In fact, we have

Y {ra(s) Cofs) = B (s), w> =0

which implies

VS O(s)=r,(s)[n{C(s), wD> + 1] —nl{B(s), w).

SE

By definition of @, the function r, cannot be contained in V,, which proves
the claim.
The open set

Wi= C(S)xR\{(r,,z,)}
contains F, but not the elements (r,, z,), n€ N. Thus, we have

F, & W.

Since g, - o, the mapping F cannot be upper semicontinuous at ¢. |
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4. CONTINUITY PROPERIES OF THE MINIMAL VALUE

PROPOSITION 4.1. Let N=1. Then E: Wi — R is continuous in o, M if
and only if 6, satisfies the Slater condition.

Proof. Assume o, satisfies the Slater condition. We claim that £ is
lower semicontinuous in g,. In fact, define for £ >0 the open set

W,:={(v,z)eS" 'xR|E,,—z<¢},

which contains Z, . By Proposition 3.5, Z is upper semicontinuous at .
Hence there exists an open neighborhood W« %% of o, such that

ceW=2Z.cW,
which implies

vV E,—E,<¢

geW

and proves the claim. Since, by Proposition 3.2, E is also upper semicon-
tinuous at ¢, the continuity of E at ¢, follows.

Now assume F is continuous in g,. Then E is also upper continuous at
g, and, by Proposition 3.2, o, satisfies the Slater condition. §

PrOPOSITION 4.2. Let N=2 and oy€ L. Consider the statements

(1) P:2-POW(SY~!'xR) is upper semicontinuous at o,
(2) E:2->POW(SY !'xR) is continuous at c,,
(3) oy satisfies the Slater condition.

Then we have the implications and the converse implications are
(H)=(2)=03)
not true.
Proof (1)=(2). For ¢>0 define the open set
W,:= {(v,z)e S" 'xR| |E,,—z|<e},

which contains P, . Since P is upper semicontinuous in g, there exists an
open neighborhood W< & of 6, such that

ceW=P, cW,

which implies | E, — E, | <&, i.c., the continuity of E at 0.
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(2)=(3). The assumption implies that E is also upper semicon-
tinuous at ¢,. Then (3) follows from Proposition 3.2.

(2) does not imply (1). Let S=[-1,1], N=3, and define
o:= (B, C,y, x) by setting

B(s):= (1,5,8%)  C(s):= (1,s,s%),
vy, s) =1, x(s) := 1 +sin(2xs).
We claim that the minimal set P, is given by
P,={(v,1)eZ,|v;=0}.

In fact, we have for each (v, 1)e P,

N\

B,v)
(C,vy

N

1

ro =
and consequently

B
(MV)ETn <§—£)—i—— - sin(2ns)> = —gsin(2ns) < 1

with the active points
(_1: _%)’ (15 _%): ('—19 %)’ (Ia 43_1)’

which implies E, < 1. Consider a point (5, £)e Z, such that 5, # 0. Since
vV {C(s), 5> >0,
seS§

we have 7, #0 and, consequently,

0, + 0,5+ ,8° - #5(s% — %)
171+525+17353 51+52S+53S3.
In the open interval (0, 1) the expression
s2— 53
Oy + 0,8+ 0387
is always positive. If 75 >0, then we have for 7,=1 and s, = 2 the estimate

S (2.3
._”3_(&_30)_3_ 1 —sin(27tso))

E>1-<1+_ - -
Uyt 0,80+ 035,

= 2 3

U5(s5—s

=y 3(_0 0_) s+1>1.
Uy + 0,80+ 038,
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Similarly, we obtain for 7, <0 the estimate £> 1. Thus, it follows, that for
a solution (v, E;) we have v, =0, which proves the claim.
Then the sequence (v,, 1) in P,, where

1 1
v,=(/1—a’a,0) and @,:=-—=—-

converges to (1/\/5, 1/\/5, 0, 1), which does not belong to P,. Conse-
quently, P, is not compact and, by Proposition 5.3, P is not upper semi-
continuous at o.

However, E is continuous at ¢. In fact, consider a sequence (o,) in £,
which converges to o,. Choose points (v,, £, ) in P, . Since y>0, by
Proposition 3.2, E is upper semicontinuous at ¢. Thus, the sequence
(v,, E, ) is bounded. Consider any convergent subsequence of (v,, E, )
(again denoted by (v,, £, )), with limit (7, E). By upper semicontinuity of
E at ¢, we have E<E,. The element # satisfies the inequality

VS {C(s), 5 =0,
and we have ||7| =1. Thus, the polynomial {(C(s), o) can have at most
one zero (not counting multiplicities) in the open interval (0, 1) and, conse-
quently, there exists an active point (14, o) which is different from this
zero. Choose an element (vg, E,;) in P,. By Lemma 4.3, the element

v, i= (1 —&) v+ evg
satisfies for 0 <& <1 and for each (y, s) € I" the inequalities
(C(s)v,>>0

and

(Bs),v,> (C(s)BY o (Cls), vp)
" <<C(s), v£>_’““)><°’(”’” [(1 ~ s vy LT ETC), vy Eg

which imply (v,/||v.l|, E,)e P,. For (n,, s¢) we have

(Bl
£ (G )

{C(s0), ) Et {C(s0), o E ]

<! '[“ T oy L Clson 0y B

which implies
{(C(s0), 0
{C(so), v.»

or E,<E, and consequently E, = E.

<C(SO)a v

S .
(1 *8) <C(S0)a Ue> £

EUS(I—E)



304 BROSOWSKI AND GUERREIRO

Since we have considered an arbitrary convergent subsequence of
(v,, E,,), the sequence E, converges to E_, ie., E is continuous at o.

(3) does not imply (2). Let S= {0}, N=2, and define

BO):= (0,0, C(0):i= (0,1 x(0):=1,  (5.0):= =T

Then we have
Z,={(v.z)eS" xR|v,>0 and z> 1},

E,=1, and P,={(v,z)eZ,|z=1}. Any (v,z)e Z, with z>1 is a Slater
element.
Define a sequence (g,) by

1 1-—-
Bn(o) = <;5 0)9 Cn(o) = (05 1), xn(o) = 1’ ?n(n’ 0) L= —2_11_

Then we have

Zan={(v, z)eS'xR|v,>0 and 2L <1 and z>1—v—l},
n, nv,
E, =0

s

and

n 1
ol )
" n?+1 /nt+1
It is clear that 6, o but E, 4 E,. |

Remark. A similar proof to (1)=-(2) shows also that the condition

(1a) Q: £ - POW(C(S) x R) is upper semicontinuous at g,
implies condition (2).

The implication (2)=>(3) is also true for ¢, M.

LeMMAa 4.3. Let there be given a sequence (g,) in & and elements
W, z,)EZ, ,0€L, (Wo, E)e S ' x R such that

0,0 and (Wnazn)_)(wo’é)‘
If (wy, zg)€ Zy and 0 <e < 1, then the element

v, 1= (1 —&) wy+ sp,
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satisfies for each (n, s)e T the inequalities

(C(s),v.7>0
and

(Bls), v, (Cls)we) 5. {Clshved
"<<Cu»m>“x“ggym”)Dl"”<cuxm>E+8<cuxn>”}

Proof. For neN define the elements

v = (1—¢)w,+ev,.
Since ¢,, — o, for n large enough we have

YV LCus), vo) =4 mi? {C(5), vy> >0,

se S Se
which implies
vn
e U, and

oz ™ liv.

For each (5, s)e T we have the estimate
(B,(s), v )
— 2L x.(s
n<<CAQu€> )

o CCshw [<Bhw
= ﬂ<a#%%>"[«uﬂw» X“@

<C,,(S), UO> <B,,(S), UO>
+8<a@xw>'[<aﬁx%>"n“q
C.s),w,
<(1~6)%5%{2‘>7n(4, s) z,

L <Cals)00) [Uﬁﬂww_xmﬂ.

(), 07> T LC5), 1>
For n— oo we obtain
(Bs), v,
”<<cwxm>“x“”)

() wod  a (C(shvod [ (B(s),vod

S“‘*)<cmxm>y”””E+8<cuxm>”[<cux%>_x“ﬂ
(Cshwod « {C(s), o0

<CwL%>E+B<CBLm>%]

<ﬂmw[u~w
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PROPOSITION 4.4. Let 6 €8 be such that ¢ satisfies the Slater condition
and P, is compact. Then E is continuous at o.

Proof. Let (¢,)< &, 0,—0, and consider the sequence (£,) in R.
Since, by Proposition 3.2, E is upper semicontinuous at o, for each >0,
there exists an nye N such that

nzny=E, —E, <e

Thus, the sequence (E,,) is bounded and it suffices to prove that every
convergent subsequence of (E,,) (again denoted by (E,,)) converges to E,.
We can also assume that there exist elements (w,, E, )e P, such that (w,)
converges to an element woe S¥~! and E, converges to E. Then we have
E<E,.

Choose (v, E,)e P,. By Lemma 4.3, for each 0<eg<1, the element
v, := (1 —¢&)wy+ev, satisfies for each (#, s) € T the inequalities

(Cls),2)>0
and

(B(s) v S v 5 (C6) )
(s o) v (-0 (S B i e |

which imply (v,/||v,|l, E,) € P,,.
Define for each m e N the element

(1 1 w +1
v,i=(1—— .
" m) ° mu0

Since (v,,/|v,.1l, E,) € P, and P, is compact, there exists a subsequence of
(v./]v,, )} (again denoted by (v,,/||v,,||)) and an element (7, E,) e P_ such
that v,,/||v,.|| = #. Since | v,,|| = 1 we also have v,, — o. Since v,, - wq, we
have ¥ =w,. Then the estimate

CB(5), U
(. ;V)’e i ( (C(s), v x(s)>

1\ LCB) o) p 1 LC(s),00)
SY(ﬂ,s)KI m) Co), vm>E+m<C(s),vm>E”]

implies, for m — o0,

v (S
n,5)eT

(C(s), wo> x(s)) <y(n, s) E,

which shows E, < E. |}
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5. CONTINUITY PROPERTIES OF P

ProrosiTiON 5.1. If o in L satisfies the Slater condition, then the
mapping
P: 2 -5POW(SY ' xR)

is r-closed in o.

Proof. Let there be given sequences
o,:=(B,,C,,7,,x,)in8and (v,, E, Je P,
and (7, Z)e S¥ ! x R such that

6,0 and (v, E;,)— (3, 2) and vel

o

By Proposition 3.1, (4, £) € Z, and consequently, 2= F .

Choose an element (v, £,) in P,. By Proposition 3.2, Z is lower semicon-
tinuous in ¢. Thus, there exists a subsequence of (o,) (again denoted by
(¢,)) and a sequence (w,, z,) in Z, such that

W, 2,) = (v, E,).
Then we have E, <z,, which implies Z< E,, and thus (9, E,)e P,. §
LEMMA 5.2. Assume o €  satisfies the Slater condition and (vs, E,)e P,.

Then for each 1> 1 the parameter o ; satisfies the Slater condition and the
element (v,y, AE,) is contained in P, where

g, = (Ba Ca 7s xi)

and
. <B7 UO> _<Ba D(}>\
x*“‘<cﬂm>+i<x (C,ve>)

Proof. For each (v, z) in Z, and for each (5, s) in T we have

n(iﬁ&kﬁz_xﬂn)

{Cls), 0
<B(S),U>_ [ <B(S)v UO>~‘_ >
+”[<<C(s>,v> X“O**‘ 1)(<cwx%> X“)]

<y, 5)z+ (A—1)p(n, 5) E, <y(n, 5) Az,

which implies (v, iz)e Z,,. If (v, z) is a Slater-element of Z, then (v, 4, z)
is a Slater-element of Z,,, ie., Z5 # J, for each 1> 1.
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If we consider the element (v,, E,)e P,, then we have for all
(”’S)EM(O-?UO’EO')

(Gt )= (eer =)
= Ay(n, 5) E,»
which implies
Mo, vy, E,) = M(0,, vy, AE,).
By Proposition 2.2, (vy, AE,)e P,,. |

PROPOSITION 5.3. Assume #S > N—1 and define the set
8:= {o€ | P, compact and ¢ satisfies the Slater condition}.

Then:

(i) The mapping P: & - POW(SY ™' x R) is upper semicontinuous at
oef if and only if 6 € &;
(ii) The set 8 is open in L.

Proof. (i), (1) Let P, be compact and o satisfy the Slater condition.
Suppose P is not upper semicontinuous at . Then there exists an open set
W and sequences

g, and (W, E; )EP,,
such that
P,cW  and 6,—0 and (w., E, )¢ W.

By Proposition44, E, — E,. We can assume that w,— w, for some
woe SV~ Since (w,, E, )¢ W we have (w,, E,) ¢ P,. By compactness of
P, there exists a d-neighborhood

U {w 2)eS" 'xRIlI(w, 2) = (v, E,)Il <8},

(v. Eg)e Py

which also does not contain (w,, E,), hence

Vo [lwo—0]=8>0.
(v, Eg)e Py

Choose an element (v, E,) in P,. By Lemma 4.3, for 0 <¢< 1, the element

v, = (1—¢&)wg+ v,
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satisfies for each (#, s) e T the inequalities

(C(s),v,>>0

and
B(s), v,
(St —x(s)) <7t 9) E,.
e, (v./v.ll, E,)€P,. Then, for 0 <e< 1, we have
HWOM s .>5>0.
o,

Since v./||v.|| = w, at £ —> 0, we have a contradiction.

i), (2). Case 1: x¢ V,. Let P be upper semicontinuous at o¢. By
Proposition 4.2, the parameter o satisfies the Slater condition. Suppose P,
is not compact. Then there exists a sequence of points (v,, E,) in P,
without a limit point in P, and, comsequently, without a limit point in
U,xR. For neN, define

1 {(B,v,>
A i=14-— =
T T,y

xn:zrn_*—in(x_rn)a Gn:z (BﬂC?’y’xn'

By Lemma5.2, (v,,4,E,)eP, . The assumption x¢ V, implies £,>0.
Thus, we have (v,, 1,E,) ¢ P,. Consider the open set

W= (U, xR\{(v,, 2, E,)} =S¥ xR

Then we have P, < Wand P, ¢« W for each neN.
Since
”O'M—O'“ = “xn_x”oo

z(in_l)”rnhx”oo

<7l Eo(d,—1)
1
=17l £,
it follows that o,— o, which contradicts the upper semicontinuity of P

at o.

Case 2: xe V,. In this case we have

=<B,v>)?
(C,vy)

X

P{,z{(u,O)e U, xR



310 BROSOWSKI AND GUERREIRO

and we will use the notation r := x. Proposition 4.2 implies that o satisfies
the Slater condition. If ¢ is normal, then, by Corollary 6.2, P, is compact.
Thus, we can assume dim H, > 2.

Suppose, by way of contradiction, P, is not compact. Then there exists
a sequence (v,, 0) in P, without a limit point, i.e., the set {(v,, 0)} is closed
in P, and in view of Proposition 5.1 also closed in U, x R. Consider the
linear space :

L(r):= {(rC—B,wH>eC(S)|weR"}.
If dim £(r)=0, then we have V,= {r}. Choose ,€ { —1, 1} such that

O(s) := 157105 9)

is not the zero function. Define a sequence of parameters ¢, := (B, C, ¥, x,,)
by setting
o

=r——

n

X

R

Then we have also V, ={r}. We claim, that Q, = {(r, 1/n)}. In fact,
consider for each (n, s) e T the inequality

nMo7 (Mo, 5)

1) = x4(5)) = <709)

where we have equality for those (no,s) such that y(y,,s)>0, ie,
E,, = 1/n. Then (v,, 1/n) belongs to P, . Define the open set

W= U(,=R\\{<vn’%)},

which contains P, and does not contain P, for each neN. Since o, —» o we
have a contradiction to the upper semicontinuity of P at o. Thus, P, is
compact in this case.

If dim £(r) > 0 choose a basis ¢, ¢,, ..., ¢, of £,. Using the formula

dim £,+dim H,=N
(compare [8, Section4]) and the estimate dim H, > 2, we have
d:=dim &, <N-—2

By assumption S contains at least N—1 points. Then there exist
1<k<d+1 points

81589, ey SEES
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such that the vectors

J(Stc) = ((P}\(SK)’ ¢2(SK)9 b (pd(sk))s

k=1,2,..,k are linearly dependent. Thus, we can find real numbers
Ay As, ey A such that

k
Y A J(s,)=0.
K=1
We can assume that 4, #0, x=1,2,.., k and
k
Y hd=1
k=1

Then the set

{sgn i, s)eT|1<k<k}

is a critical set with respect to r (for the definitions compare B. Brosowski
and C. Guerreiro [101).
Define the disjoint and closed sets

S* = {s.€S|sgnd,=1 and y(sgn 1., 5s,.) >0}
and
S™:= {s.eS|sgni,=—1and y(sgni,s,)>0}.
We can assume that at least one of the sets S* and S~ is non-empty,

replacing, if necessary, A, A,, .., A, by —4,, —4,, .., —4; and using the
condition

vV y(1,5)+y(—1,5)>0.

ses
By Urysohn’s lemma there exist continuous functions @+, @ : S - [0, 1]
such that

1 if seS*
+ -
07 (s):= {0 if seS™uUS°

and

_ 1 if seS~
O ()= {0 if seS*tuUS,

640/61/3-4
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where
So:= {s.€S|y(sgn i, s,)=0}
The function
O(s):= 07 (s) (L, 5) — O~ (s) y(—1,)
satisfies the inequalities

V —9(=1,5)<0(s)<7(1, 5)
seS

and, consequently,

vV n0(s)< (7, 5)-

(n,s)eT

Define a sequence of parameters o, := (B, C, vy, x,,) by setting

where > 0 is chosen so small, that each o, satisfies the Slater condition.
We claim that (r, d/n) is contained in Q, . In fact, consider for each
(n, s) e T the inequality

o o
1) = x,()) = - 16() (. 5) -

with equality at least for the points
(Sgn j'11 sl)’ (Sgn )“2a 52), () (Sgn /110 SK)'

Since this set is critical with respect to r, by [10, Theorem 1.1], the result

follows.
W:=U,x R\{(vn, é)},
n

Define the open set
which contains P, and does not contain P, for each ne N. Since 6,— 0
this contradicts the upper semicontinuity of P at g. Thus, P, is compact.
(ii) Choose a parameter o, in ¥. By Proposition 2.3, there exists an

open neighborhood Wi« £ of o such that for each o € W}, the parameter
o satisfies the Slater condition.
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Let W be a compact neighborhood of P
Define the real number

which is contained in U, x R.

o’

a:=min{{Cy(s), v>eR|seS and ve W} >0.
By part (i) of this proposition, the mapping
P: 8- POW(SY'xR)

is upper semicontinuous at g,. Hence, there exists a neighborhood W[ < 2
of o, such that

vV P,cW.

aeWS

We can assume that W is contained in the open set

(’)m{aeﬁ

na—aon<f§},

which implies that each o € Wj also satisfies the Slater condition.

1

We claim that each P,,o€ Wy, is closed. In fact, let (v,, E,) be a
sequence in P such that

(Un’ Eo’) - (UO’ Eo)'

By compactness of W, the element (v, E,) is contained in W. Thus, the
element v, satisfies for each s& S the inequality

(Cs), 09> = {Cols), 19> — { Cols) = Cls), 10>
>a—HCy—CH>§>Q
which implies voe U,. By Proposition 5.1, (vy, E,) is contained in: P,.
Thus, P, is compact and the neighborhood W} of ¢, is contained in &, ie.,
2 is open. |

Remark. The assumption # S>= N— 1 was only used in part (i), (2) of
the proof. Further we remark, that in part (i), (2) of the proof, we used in
Case 1 only variations of x in the set

{r+AMx—r)eC(S)|iz1},
and in Case 2 only variations of x in the set

{r+Ax;—r)eC(S)| 220},
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since the variations considered in Case 2 can be written as
APy
X, =r——=r+—(x;—r
n n n 1
with x, =r— O resp.

(2] 1

X, =Fr——=r+-=(x,—r)
n n

with x; =r—96.

Thus, if the Slater condition is fulfilled then part (i), (2) of the proof works
also with the weaker assumption of upper semicontinuity of P restricted to
the set

g1'3,C,y = {(Ba C7 % X)Gﬁ}

or even with the assumption of outer radial upper semicontinuity (ORU-
continuity) introduced by B. Brosowski and F. Deutsch [3]. Thus, we have
also

PROPOSITION 5.4. Let g€ L satisfy the Slater condition. If the mapping
P:%, . ,—»POW(SY"'xR)

is upper semicontinuous (or ORU-continuous) at o, then P, is compact.

PROPOSITION 5.5. If 6 € 8 and P, is compact, then o is normal.

Proof. Let (v,E,)eP, and, by way of contradiction, suppose dim
H, > 2. Then there exists an element we H, such that w and v are linearly
independent.

Since for ¢ >0 small enough we have

V (C(s),v+ew) >0,
se S
we can assume

VS {C(s), w)>0.

Let s, S and 4,e R be given by

i <C(s9), v — min {C(s),v>
O T UC(sh Wy e Cshwy

and consider a sequence (4,) such that

0< A, <A and Ap— Ao-
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For each ne N we have
{r(s) C(s)—=B(s),v—4,w) =0,

where r:= (B, v)/{C,v).

Since
(C(s), v)
V ———=24,>4,
sesS <C(S),W> 0
implies
¥ {C(s),v—4,w>>0.
se S
we have
r__<st_inw>
_<C,U_;an>.

This implies (w,,, E,}e P, for w, := (v—A4,w)/llv—A,w].

Since P, is compact,
v— Agw
— 0" E \ep,.
lv—Aowl

This contradicts
CC(sg),v—Agw>=0. §

COROLLARY 5.6. If P is upper semicontinuous at c € £, then U, contains
normal elements.

Proof. This is an immediate consequence of Propositions 5.3 and
55. §

COROLLARY 5.7. Define the set
2* .= {ce 8| #P,=1and o satisfies Slater condition}.

Then ¢ is normal and the mapping
P:@* SV-IxR

IS continuous.
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6. CONTINUITY PROPERTIES OF Q

PROPOSITION 6.1. The mapping R,: U, — C(S) restricted to the normal
points of U, is an homeomorphism.

Proof. Let
U:= {ve U,|vis normal}

and denote by R, the restriction of R, to U. It is clear that R, is
continuous and injective.

To prove that it is homeomorphism, it suffices to prove that it is also an
open mapping. In fact, let W< U be an open subset. Suppose by way of
contradiction that R (W) is not open in R,(U). Then there exist an
element r,:= R (vy) in R, (W) and a sequence (r,) with r,é R (W)
and r, - ro. Let v, e U be such that r, = R,(v,). Since the sequence (v,) is
bounded, we can assume v, — D.

Case 1:
Y LC(s), 7> >0.

ses
In this case #e U, and, by continuity,
(B, )
n - — 7
(C,5)

which implies r,= (B, 5)/{C, ?). Since ry, is a normal point, we have
v=v,. Since W is open and voe W, for n large enough, v,e W, which
implies 7, R (W), contradicting r, ¢ R (W).

Case 2:

35 {C(s0), 0> =0.

so€
In this case ¢ U,. For each ne N, we have

V_<rils) C(s) = Bls). v,> =0,

which implies

VS {ro(s) C(s)— B(s), 7> =0.

This means ve H,. Since dim(H,)=1, voe H
¥ = Avy for some A s 0. This implies

and |[o]| =1, we have

vg?

{C(sq), Avy ) =0
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and hence
(C(so), 0> =0,
which is not possible. |

Remark. In the special case of Chebyshev-approximation by
generalized functions (compare Example 1.1.) this result is due to
E. W. Chency and H. L. Locb [12].

Remark. The mapping R, is in general ncither closed nor open as the
following cxample shows.
Choose S=[0, 1], N=3, and dcfine

Y B(s):=(1,0,0) and  C(s):= (0, L)

For each ne N, the element

is contained in U since

1
Vv —+5>0.
scSh

The set {v,e U-|neN} is closed (in U.), since it has no accumulation
point in U.. The set of elements

sl (B(s),v,) 1/n’
T KCs), ) lim+s

is not closed in C(S), since it has the function ry(s)=0 as a limit point.
Consider the non-normal element

a2 2
W (0, 5 2).

Choose ¢ =1/10 and define the open neighborhood W of w by setting
W:= {veUq.|dv—w|<e}.
Then R,(W) is not open. In fact, if we consider

. (yrP 1m0
o= N nE i, D
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for »n large enough, we have r, := R, (w,) is not contained in R (W). But
we have also r, —0 and: R (w)=0 is contained in R (W'). Consequently,
R (W) is not open.

COROLLARY 6.2. Let ¢ be in 8. Then P is compact if and only if Q, is
compact and 6 is normal.

Proof. The result is an immediate consequence of Propositions 6.1 and
55. 1

ProprosSITION 6.3. (i} If the mapping Q: L& - POW(C(S)xR) is upper
semicontinuous at o,€ 8, then o, satisfies the Slater condition and Q,, is
compact.

(i) If oo€ L satisfies the Slater condition, Q,, is compact, and a, is
normal, then Q is upper semicontinuous at c.

(iii) The set
§.= {0 € 8| o satisfies the Slater condition and Q, compact and o normal }

is open in L.

Proof. (i) Using the remark after Proposition 4.2, we have also that o,
satisfies Slater condition. Suppose Q,, is not compact. Then there exists a
sequence of points (r,, E, ) in Q, without a limit point in Q,,. For neN,
define

1
Ayi= 1+;, X, =1+ A,(x—r,), g,:=(B,C,y,x,).
By Lemma 5.2, (v,, 4,E,,) € Q,,. Since Q,, is not compact, we have x¢ V',

and, consequently, E, >0. Thus, we have (r,, 1,E,)¢Q,, Definc the
open set

W= C(S)xR\{(r,, 4,E,)}.
Then we have @, < W and Q, ¢ W for each neN. Since

”o-n__O-O” = ”xn_x”w
=(ln_1)”rn_x“oo
< ”’y”ooEUo(in_l)

1
=~ 17l B

it follows that o, — 0,, which contradicts the upper semicontinuity of P
at .
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(ii) Assume Q is not upper semicontinuous at o,. Then theére exist an
open set W< C(S)x R, a sequence (o,) in £, and a sequence (r,) such that

Wo0,, and 0,0 and r€ Qs \W.

Let v,e U, be such that

. (B o)
"Gy v,

By Corollary 6.2, P, is compact and, consequently, by Proposition 5.3,
P is upper semicontinuous at ¢4. Choose a compact neighborhood W, of
P,,, which is contained in U, xR. By Proposition 5.3, there exists a
neighborhood W, e £ of g, such that for each o e W,, P, is compact and,
by upper semicontinuity of P at ¢, is contained in W,. Since 6, - o, for
n large enough, (v,, E, ) € W,. By compactness of W,, we can assume

-

(vns Ea,,) - (UOa E)
Since W, < U,,x R, we have

¥V (Cyl(s),v9)>0
se 8

and, by Proposition 5.1, (v,, E) in P,,. Then v,— v, implies that the
sequence

(B,, 0,
P el L 4
"G,

converges to (B, v,,/{Cy, vy, which is contained in g,,.
But this is impossible, since each r, is not contained in the open set W
and O, < W. Thus, Q-is upper semicontinuous at g,,.

(ili) Choose an element g, in £. By Corollary 6.2, P, is compact.
Then, by Proposition 5.3 there exists an open set W such that g, W and
for each o € W the parameter o satisfies the Slater condition and P is com-
pact. By Corollary 6.2, 0, is compact and ¢ normal, ie, Wc & Thus,
is open. |

Remark. As in the proof of part (i), (2) of Proposition 5.3 we used in
part (i), only variations of x in the set

{r+Mx—r)eC(S)|i=1}.

Thus, if the Slater condition is fulfilled then part (i} of the proof works also
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with the weaker assumption of upper semicontinuity of Q restricted to the
set

QB,C,)J = {(-Bs Ca 7 X)EQ}

or even with assumption of outer radial upper semicontinuity (ORU-
continuity) introduced in [3]. Then, we have also

PROPOSITION 6.4. Let g€ 8 satisfy the Slater condition.
If the mapping

Q:8, ¢, ~»POW(C(S)xR)

is upper semicontinuous (or ORU-continuous) at o, then Q, is compact.

COROLLARY 6.5. Define the set
2% = {oe 8| # Q,=1 and o satisfies the Slater condition and o normal}.
Then the mapping
0:2% 5 C(S)xR

is continuous.

PROPOSITION 6.6. (i) If o satisfies the Slater condition, 7, o Q, is
compact, and o is normal, then ©, o Q, is upper semicontinuous at o.

(ii) The set

2:= {0 8|0 satisfies the Slater condition
andm, o Q, compact and o normal }

is open in L.
(iil) Define the set
e*:= {oef|#n, 0 Q,=1}.
Then the mapping
Q: 2% 5 C(S)
is continuous.

Proof. The proof follows from Proposition 6.3, since @, is compact if
and only if 7y » @, is compact. ||
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CorOLLARY 6.7. In the case of ordinary rational Chebyshev approxima-

tion, we have

If ¢ is normal and # ny o Q,=1, then the metric projection is
continuous at G.

Proof. The result follows from 6.6(iii), since in the case of crdinary

Chebyshev approximation we have y=1 (compare Example 1.1}, which
implies the Slater condition. J

10.

11.

12.

13.

14.

i5.

16.
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